Welcome Back

Google icon Sign in with Google
OR
I agree to abide by Pharmadaily Terms of Service and its Privacy Policy

Create Account

Google icon Sign up with Google
OR
By signing up, you agree to our Terms of Service and Privacy Policy
Instagram
youtube
Facebook

Histograms

Histograms

  • A histogram is an image of data that looks like a bar graph and groups several categories into columns along the horizontal x-axis.
  • It is used to show the frequency distribution graph.
  • Basically, It is a number of observations within each internal given.
  • The number count or percentage of occurrences in the data for each column is represented by the vertical y-axis.
  • For example, if you want to display how many people have had Instagram followers between in range zero - 10, 11 - 20, 21 - 30, 31 - 40, 41 - 50, 51 -60, 61 - 70, and 71 - 80. The histogram chart would look like:                                                                                                                   The x-axis is showing the number of followers on Instagram and the y-axis, it is showing the frequency distribution of how many people have this many followers and so on.

Create Histogram

  • Now we are going to learn how to create a histogram and in order to do that all we need is an array of numbers to give.
  • The function used to create a histogram is hist() it requires an array as an argument.
  • For now, we are going to use Numpy to randomly generate 200 values, where the values will be concentrated around 50 and the standard deviation is 10:
    import numpy as np
    x = np.random.normal(50, 10, 200)
    print(x)
    
    #Returns
    # [55.70108918 38.29919583 55.81828687 41.47128818 60.897827   32.78469312
    #  53.62881874 39.58916255 45.37731274 58.20629179 58.23814827 53.68647164
    #  38.51564485 59.03635735 54.11523743 48.79951843 46.82958699 56.95786573
    #  62.35800349 33.27207057 44.80259736 41.88762426 58.68454873 43.06677663
    #  49.6628192  67.06269837 68.41227224 36.68354106 42.81415778 34.36625087
    #  57.3361391  55.43163922 49.94911588 35.55501738 35.17646889 37.35777046
    #  56.07707905 48.28443342 54.23152588 58.29264145 36.15508456 54.14652093
    #  52.37288214 53.21854696 33.9617479  61.66036151 53.26786232 37.37739758
    #  33.07333517 39.25132908 66.1726773  57.49632168 59.54034863 57.1268224
    #  56.0176531  47.7071597  52.72617274 59.39139163 48.94529751 71.95961033
    #  46.28913826 41.42347242 25.73600773 43.164083   56.3780118  37.10101523
    #  49.08640553 43.7173265  57.36487904 64.70411505 44.96693606 41.91904105
    #  48.12295727 51.24781437 41.01660274 69.4067659  44.22124921 38.54511321
    #  46.50898964 58.13115509 65.47483559 50.25368443 53.94623906 60.5943126
    #  50.07316205 54.47404859 66.6593775  37.59614744 33.96230183 51.60097947
    #  60.40548912 50.21617523 58.95467234 39.34313254 49.22473296 39.31644774
    #  52.89704324 51.49240103 58.87986894 49.33672186 58.79573008 57.19163298
    #  50.48296585 67.41756125 41.31952542 52.9988233  32.83836562 42.85631157
    #  40.75450087 58.3589145  38.11401643 62.02001568 57.43111304 61.06106607
    #  66.32568958 60.08645214 48.20773168 55.03079482 39.39972188 54.73913797
    #  71.72517407 59.98265339 52.47625978 47.65336182 65.31409713 43.47304708
    #  47.902406   54.24208893 53.82285622 46.69373633 36.06644265 58.80938179
    #  47.25804507 29.12749142 40.67472043 35.42303436 43.88374844 68.49168046
    #  58.97210548 60.03444705 43.56477533 48.38344693 41.30198934 33.08193837
    #  54.24425614 60.71973626 65.60017265 45.84980495 35.45242293 39.20129152
    #  58.26372873 54.45572336 36.19843967 51.28981817 59.61251437 53.47677321
    #  53.56069119 59.38448471 48.12585851 49.26715578 55.06868477 47.94064541
    #  35.80465915 47.83494994 65.27458966 55.21722302 56.0207855  45.96270343
    #  39.45715906 39.82795206 57.34537025 63.06229431 60.1370541  54.43050894
    #  36.7770104  61.73538056 51.79222192 59.04657697 56.2872907  58.22101358
    #  61.20467294 35.04527821 44.5545085  53.24002408 38.40238678 48.16403873
    #  47.12492569 57.61374096 72.30687828 65.52107736 60.90721994 52.85035572
    #  62.8292058  34.02267077 42.82088918 48.52233393 39.86881213 63.49997637
    #  40.14507431 64.66296535]

    And Now we will use hist() to create a histogram:

    import matplotlib.pyplot as plt
    import numpy as np
    x = np.random.normal(50, 10, 200)
    
    plt.hist(x)
    plt.show()

    Output: